Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457483

RESUMO

The development of effective drugs targeting the K-Ras oncogene product is a significant focus in anticancer drug development. Despite the lack of successful Ras signaling inhibitors, recent research has identified PDEδ, a KRAS transporter, as a potential target for inhibiting the oncogenic KRAS signaling pathway. This study aims to investigate the interactions between eight K-Ras inhibitors (deltarazine, deltaflexin 1 and 2, and its analogues) and PDEδ to understand their binding modes. The research will utilize computational techniques such as density functional theory (DFT) and molecular electrostatic surface potential (MESP), molecular docking, binding site analyses, molecular dynamic (MD) simulations, electronic structure computations, and predictions of the binding free energy. Molecular dynamic simulations (MD) will be used to predict the binding conformations and pharmacophoric features in the active site of PDEδ for the examined structures. The binding free energies determined using the MMPB(GB)SA method will be compared with the observed potency values of the tested compounds. This computational approach aims to enhance understanding of the PDEδ selective mechanism, which could contribute to the development of novel selective inhibitors for K-Ras signaling.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras) , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Sítios de Ligação , Domínio Catalítico
2.
RSC Adv ; 14(9): 5907-5925, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370458

RESUMO

Malignant melanoma is the most invasive skin cancer with the highest risk of death. The inhibition of BRAFV600E appears relevant for overcoming secondary resistance developed during melanoma treatment. BRAFV600E triggers angiogenesis via modification of the expression of angiogenic inducers, which play a crucial role in the metastasis of melanoma. Accordingly, the dual inhibition of the BRAFV600E/VEGFR-2 signaling pathway is considered a rational approach in the design of anti-melanoma candidates. In this study, a new class of pyrazolylindolin-2-one linked coumarin derivatives as dual BRAFV600E/VEGFR-2 inhibitors targeting A375 melanoma cells was designed. Target compounds were tailored to occupy the pockets of BRAFV600E and VEGFR-2. Most of the synthesized compounds demonstrated potent mean growth inhibitory activity against A375 cells. Compound 4j was the most active cytotoxic derivative, displaying an IC50 value at a low micromolar concentration of 0.96 µM with a significant safety profile. Moreover, 4j showed dual potent inhibitory activity against BRAFV600E and VEGFR-2 (IC50 = 1.033 and 0.64 µM, respectively) and was more active than the reference drug sorafenib. Furthermore, derivative 4j caused significant G0/G1 cell cycle arrest, induced apoptosis, and inhibited the migration of melanoma cells. Molecular docking showed that compound 4j achieved the highest ΔG value of -9.5 kcal mol-1 against BRAFV600E and significant ΔG of -8.47 kcal mol-1 against VEGFR-2. Furthermore, the structure-activity relationship study revealed that TPSA directly contributed to the anticancer activity of the tested compounds.

3.
Mol Divers ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289431

RESUMO

RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.

4.
Bioorg Chem ; 144: 107138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262087

RESUMO

Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium. In this research study, a series of hybrid compounds combining quinolone and isatin were synthesized and assessed for their effectiveness against MTB, as well as their ability to inhibit the activity of the InhA enzyme in this bacterium. Among the compounds tested, 7a and 5g exhibited the most potent inhibitory activity against MTB, with minimum inhibitory concentration (MIC) values of 55 and 62.5 µg/mL, respectively. These compounds were further evaluated for their inhibitory effects on InhA and demonstrated significant activity compared to the reference drug Isoniazid (INH), with IC50 values of 0.35 ± 0.01 and 1.56 ± 0.06 µM, respectively. Molecular docking studies investigated the interactions between compounds 7a and 5g and the target enzyme, revealing hydrophobic contacts with important amino acid residues in the active site. To further confirm the stability of the complexes formed by 5g and 7a with the target enzyme, molecular dynamic simulations were employed, which demonstrated that both compounds 7a and 5g undergo minor structural changes and remain nearly stable throughout the simulated process, as assessed through RMSD, RMSF, and Rg values.


Assuntos
Isatina , Mycobacterium tuberculosis , Quinolinas , Humanos , Proteína de Transporte de Acila/farmacologia , Isatina/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Proteínas de Bactérias/metabolismo
5.
Chem Biodivers ; 20(11): e202300804, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933986

RESUMO

Bacterial virulence becomes a significant challenge for clinical treatments, particularly those characterized as Multi-Drug-Resistant (MDR) strains. Therefore, the preparation of new compounds with active moieties could be a successful approach for eradication of MDR strains. For this purpose, newly synthesized quinoline compounds were prepared and tested for their antimicrobial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Pseudomonas Aeruginosa (PA). Among the synthesized derivatives, compounds 1-(quinolin-2-ylamino)pyrrolidine-2,5-dione (8) and 2-(2-((5-methylfuran-2-yl)methylene)hydrazinyl)quinoline (12) were shown to possess the highest antimicrobial activity with the minimum inhibitory concentration with the values of 5±2.2 and10±1.5 µg/mL towards Pseudomonas aeruginosa without any activity towards MRSA. Interestingly, compounds 2-(2-((1H-indol-3-yl)methylene)hydrazinyl)quinoline (13) and 2-(4-bromophenyl)-3-(quinolin-2-ylamino)thiazolidin-4-one (16c) showed significant inhibition activity against Staphylococcus aureus MRSA and Pseudomonas aeruginosa. Compound 13 (with indole moiety) particularly displayed excellent bactericidal activity with low MIC values 20±3.3 and 10±1.5 µg/mL against Staphylococcus aureus MRSA and Pseudomonas aeruginosa, respectively. Effects molecular modelling was used to determine the mode of action for the antimicrobial effect. The stability of complexes formed by docking and target-ligand pairing was evaluated using molecular dynamics simulations. The compounds were also tested for binding affinity to the target protein using MM-PBSA. Density-functional theory (DFT) calculations were also used to investigate the electrochemical properties of various compounds.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Quinolinas , Simulação de Dinâmica Molecular , Pseudomonas aeruginosa , Antibacterianos/química , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Quinolinas/química , Simulação de Acoplamento Molecular
6.
Bioorg Chem ; 141: 106918, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866206

RESUMO

A series of 4-phenylcoumarin derivatives was synthesized and evaluated for their cellular anti-HIV-1 and HIV-2 activities as well as their inhibitory effects against HIV-1 reverse transcriptase (RT). The hydrazone compound 8b and the ethylthiosemicarbazide derivative 4c showed the best inhibition activity against wild-type (WT) HIV-1. The promising compounds were further evaluated against HIV-1 RT and exhibited significant inhibitory activity with compound 8b showing comparable effect to the reference NNRTI Efavirenz (IC50 = 9.01 nM). Structure activity relationship study revealed the importance of 6-chloro and 4-phenyl substituents for optimum activity, as well as the 5-atoms linker (=N-NH-CO-CH2-O-) at position 7 of coumarin scaffold that can support the rotation and flexibility of compound 8b to fit well in the binding pocket. The molecular docking of compound 8b demonstrated a typical seahorse binding mode with better binding interactions that covered more residues when compared to Efavirenz.


Assuntos
Fármacos Anti-HIV , HIV-1 , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa/química , Cumarínicos/farmacologia , Relação Estrutura-Atividade , Transcriptase Reversa do HIV , Desenho de Fármacos , Fármacos Anti-HIV/química
7.
RSC Adv ; 13(20): 13655-13682, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152561

RESUMO

Heterocyclic compounds have been featured as the key building blocks for the development of biologically active molecules. In addition to being derived from renewable raw materials, fatty acids possess a variety of biological properties. The two bioactive ingredients are being combined by many researchers to produce hybrid molecules that have a number of desirable properties. Biological activities and significance of heterocyclic derivatives of fatty acids have been demonstrated in a new class of heterocyclic compounds called heterocyclic fatty acid hybrid derivatives. The significance of heterocyclic-fatty acid hybrid derivatives has been emphasized in numerous research articles over the past few years. In this review, we emphasize the development of synthetic methods and their biological evaluation for heterocyclic fatty acid derivatives. These reports, combined with the upcoming compilation, are expected to serve as comprehensive foundations and references for synthetic, preparative, and applicable methods in medicinal chemistry.

8.
Eur J Med Chem ; 253: 115333, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031526

RESUMO

In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.


Assuntos
Antiprotozoários , Leishmania , Animais , Humanos , Chlorocebus aethiops , Cumarínicos/química , Pteridinas/farmacologia , Triazóis/farmacologia , Triazóis/química , Células Vero
9.
Eur J Med Chem ; 246: 114959, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493614

RESUMO

In a search for new drug candidates for one of the neglected tropical diseases, leishmaniasis, twenty quinoline-isatin hybrids were synthesized and tested for their in vitro antileishmanial activity against Leishmaniamajor strain. All the synthesized compounds showed promising in vitro activity against the promastigote form in a low micromolar range (IC50 = 0.5084-5.9486 µM) superior to the reference miltefosine (IC50 = 7.8976 µM). All the target compounds were then tested against the intracellular amastigote form and showed promising inhibition effects (IC50 = 0.60442-8.2948 µM versus 8.08 µM for miltefosine). Compounds 4e, 4b and 4f were shown to possess the highest antileishmanial activity against both promastigote and amastigote forms. The most active compounds were proven to exhibit their significant antileishmanial effects through antifolate mechanism, targeting DHFR-TS and PTR1. To evaluate the safety profile of the most active derivatives 4e, 4b and 4f, the in vitro cytotoxicity test was carried out and displayed higher selectivity indices than the reference miltefosine. Molecular docking within putative target protein PTR1 confirmed the high potentiality of the most active compounds 4e, 4b and 4f to block the catalytic activity of Lm-PTR1.


Assuntos
Antiprotozoários , Isatina , Quinolinas , Isatina/farmacologia , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Relação Estrutura-Atividade
10.
RSC Adv ; 12(29): 18923-18935, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873340

RESUMO

This study reports the preparation of a new material that can remove synthetic dyes and trace metals simultaneously. A new coumarin derivative was synthesized and its chemical structure was inferred from spectral data (FT-IR, 1H-NMR, 13C-NMR). Meanwhile, chitosan nanoparticles (CsNPs) were prepared then used as a carrier for two different concentrations of the coumarin derivative (C1@CsNPs and C2@CsNPs). The TEM, SEM and DLS findings illustrated that the prepared nanocomposites exhibited spherical shape and small size (less than 200 nm). The performance of the prepared material for the removal of an anionic dye (direct red 31, DR31) and cationic trace metal (Pb2+) was evaluated in unary and binary systems. The results revealed that complete removal of 10 mg L-1 of DR31 and Pb2+ in unary system was achieved at pHo 3.0 and 5.5 using 0.5 and 2.0 g L-1, respectively, of C2@CsNPs. The adsorption of DR31 and Pb2+ followed different mechanisms as deduced from the effect of pHo, kinetic, isotherm and binary adsorption studies. The adsorption of DR31 followed the Langmuir isotherm model and the pseudo-first-order kinetic model. While, the adsorption of Pb2+ followed Freundlich isotherm model and Elovich kinetic model. In the binary system, the co-presence of DR31 and Pb2+ did not affect the adsorption of each other's. Overall, the prepared material showed promising results for the removal of anionic dyes and cations trace metals from contaminated water.

11.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946704

RESUMO

Among all cancer types, breast cancer (BC) still stands as one of the most serious diseases responsible for a large number of cancer-associated deaths among women worldwide, and diagnosed cases are increasing year by year worldwide. For a very long time, hormonal therapy, surgery, chemotherapy, and radiotherapy were used for breast cancer treatment. However, these treatment approaches are becoming progressively futile because of multidrug resistance and serious side effects. Consequently, there is a pressing demand to develop more efficient and safer agents that can fight breast cancer belligerence and inhibit cancer cell proliferation, invasion and metastasis. Currently, there is an avalanche of newly designed and synthesized molecular entities targeting multiple types of breast cancer. This review highlights several important synthesized compounds with promising anti-BC activity that are categorized according to their chemical structures.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7
12.
Bioorg Chem ; 103: 104163, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890989

RESUMO

Heading the list of the critical health-related issues worldwide, cancer continues to be a one of the most serious life-threatening diseases. The rate of cancer-related mortality is at alarming level globally because of poor ability of prevention, diagnosis and efficient treatment of cancers. Pertaining to its wide prevalence in many naturally occurring compounds, coumarin as a privileged scaffold is endowed with outstanding anticancer profile. Different classes of coumarin-based anticancer agents that act through diverse mechanisms of action have been comprehensively investigated by many researchers, such as alkylating agents, topoisomerase inhibitors, hormone antagonists, angiogenesis inhibitors, antimitotic agents, apoptosis inducers, human carbonic anhydrase inhibitors, telomerase inhibitors and other mechanisms. Accordingly, medicinal chemists and drug design scientists embarked on exploring diverse coumarin-based derivatives comprehending their potential to develop new efficient anticancer agents. The present review provides an overview of different anticancer classes based on the coumarin scaffold that have been reported since 2015 with particular emphasis on their cellular and enzymatic mechanism of actions.


Assuntos
Antineoplásicos/uso terapêutico , Cumarínicos/uso terapêutico , Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
13.
J Enzyme Inhib Med Chem ; 35(1): 1616-1630, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32781872

RESUMO

Human health in the current medical era is facing numerous challenges, especially cancer. So, the therapeutic arsenal for cancer should be unremittingly enriched with novel small molecules that selectively target tumour cells with minimal toxicity towards normal cells. In this context, herein a new series of 3,6-disubstituted pyridazines 11a-r has been synthesised and evaluated for in vitro anticancer activity. They possessed good anti-proliferative action towards human breast cancer T-47D (IC50 range: 0.43 ± 0.01 - 35.9 ± 1.18 µM) and MDA-MB-231 (IC50 range: 0.99 ± 0.03 - 34.59 ± 1.13 µM) cell lines, whereas they displayed weak activity against the tested ovarian cancer cell line SKOV-3. Among the studied compounds, the methyltetrahydropyran-bearing pyridazine 11m emerged as the unique submicromolar growth inhibitor herein reported towards both T-47D (IC50 = 0.43 ± 0.01 µM) and MDA-MB-231 (IC50 = 0.99 ± 0.03 µM) cell lines. In addition, the biological results indicated that pyridazines 11l and 11m exerted an efficient alteration within the cell cycle progression as well as induction of apoptosis in both T-47D and MDA-MB-231 cells. Moreover, pyridazines 11l and 11m displayed good mean tumour S. I. values of 13.7 and 16.1 upon assessment of their cytotoxicity towards non-tumorigenic breast MCF-10A cells. Furthermore, an in silico study proposed CDK2 as a probable enzymatic target for pyridazines 11, and explored their binding interactions within the vicinity of CDK2 binding site. Subsequently, pyridazines 11e, 11h, 11l, and 11m were selected to be evaluated for their ability to inhibit CDK2, where they exerted good inhibitory activity (IC50 = 151, 43.8, 55.6 and 20.1 nM, respectively). Finally, the in silico study implied that target pyridazines 11 exhibited not only an efficient anticancer activity but also an acceptable ADME, physicochemical and druglikeness properties, specifically pyridazines 11l and 11m. Overall the obtained results from this study quite sustained our strategy and gave us a robust opportunity for further development and optimisation of 3,6-disubstituted pyridazine scaffold to enrich therapeutic arsenal with efficient and safe anticancer CDK inhibitors.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
14.
ACS Omega ; 5(1): 832-842, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956834

RESUMO

The trafficking chaperone PDE6D (also referred to as PDEδ) has been nominated as a surrogate target for K-Ras4B (hereafter K-Ras). Arl2-assisted unloading of K-Ras from PDE6D in the perinuclear area is significant for correct K-Ras localization and therefore activity. However, the unloading mechanism also leads to the undesired ejection of PDE6D inhibitors. To counteract ejection, others have recently optimized inhibitors for picomolar affinities; however, cell penetration generally seems to remain an issue. To increase resilience against ejection, we engineered a "chemical spring" into prenyl-binding pocket inhibitors of PDE6D. Furthermore, cell penetration was improved by attaching a cell-penetration group, allowing us to arrive at micromolar in cellulo potencies in the first generation. Our model compounds, Deltaflexin-1 and -2, selectively disrupt K-Ras, but not H-Ras membrane organization. This selectivity profile is reflected in the antiproliferative activity on colorectal and breast cancer cells, as well as the ability to block stemness traits of lung and breast cancer cells. While our current model compounds still have a low in vitro potency, we expect that our modular and simple inhibitor redesign could significantly advance the development of pharmacologically more potent compounds against PDE6D and related targets, such as UNC119 in the future.

15.
J Enzyme Inhib Med Chem ; 33(1): 1095-1107, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29944015

RESUMO

Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a-d, 11a-d, 13a, b, and 15a-c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50 = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75-13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cumarínicos/química , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/química , Antineoplásicos/síntese química , Células CACO-2 , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...